
Introduction to XQC - the C Language
Binding for XQuery

Vinayak Borkar, Matthias Brantner, Christopher Hillery, John Snelson

Overview

XQC is the C language binding for XQuery. It is intended to provide a standard API
allowing applications to make use of any one of several available XQuery
implementations. It was developed as a cooperative effort between developers of the
XQilla XQuery engine1 and the Zorba XQuery engine from the FLWOR Foundation2.

XQC offers a variety of features for programmatic control over all aspects of XQuery
processing, including: compiling queries into re-usable expressions; executing compiled
queries and navigating through the results; binding external variables and the context
item for use during query execution; modifying many components of the static and
dynamic query contexts; and receiving and handling errors which may occur at any point
during the process. XQC also offers several convenience features and the option for
extensions to the basic functionality.

The benefits to having a standard, cross-engine API are numerous. Several specific ones
include:

• The ability for developers to migrate between different XQuery engines without
needing major code rewrites. This allows developers to try out several engines to
see which is best for them, and to change engines later as new features or
licensing options become available.

• The ability for tools to be written without depending on a particular XQuery
implementation. Tools developers can deliver their products to a wider range of
potential customers if they can develop to a common API.

• Eventually, the possibility of standardized training for XQuery/C developers.

The Java Database Connectivity (JDBC) standard3 is a good example of how much
benefit can be derived from a robust cross-application API standard. The Java world also
has a standard API for XQuery, known as XQJ4. XQJ is an inspiration for XQC, although
XQC does differ from XQJ in a number of respects.

XQC is an object-oriented API, even though it is for the C language. The current release
(version 1) of the API comprises seven C structs, each of which contain only function
pointers. Instances of these structs can be treated as objects; internally they contain
implementation-specific data, and each function pointer acts as a method call operating
on that data. As such, this document will refer to the structs as "classes", and to the
functions contained in these structs as "methods". It is intended that later versions of
XQC will also include a C++ language binding which closely mirrors the C API.

The current version of the XQC specification and mailing list archives are available via
Sourceforge5.

1. http://xqilla.sourceforge.net/
2. http://www.zorba-xquery.com/
3. http://java.sun.com/products/jdbc/overview.html
4. http://jcp.org/en/jsr/detail?id=225
5. https://sourceforge.net/projects/xqc/

Basics of Query Compilation and Execution

The entry point for users of XQC is the XQC_Implementation class. Client code obtains a
pointer to an XQC_Implementation in an implementation-specific manner. For example,
when using the Zorba XQuery processor, the following code will initialize the backing
data store (using Zorba's basic "simple store") and return an XQC_Implementation* :

#include <xqc.h>
#include <zorba/simplestorec.h>

XQC_Implementation* impl;
void* store = create_simple_store();
zorba_implementation(&impl, store);

Note: zorba_implementation() returns XQC_Error, an enum defined by
XQC for specifying the success or type of failure for all XQC methods. This is
why the XQC_Implementation* is returned via an output argument. Error
checking and handing will be discussed in more detail in a later section.

To compile a query, the method prepare() is called on the XQC_Implementation. The
result of preparing a query is an XQC_Expression. This class represents a compiled
query, and allows the query to be executed repeatedly.

XQC_Expression* expr;
impl->prepare(impl, "(1+2, 3, 4)", NULL, &expr);

Note: because C is not object-oriented, it is necessary to pass the instance
itself as the first argument to any method. This idiom is used for all methods
in XQC.

To execute a prepared query, the method execute() is called on the XQC_Expression.
The result of executing a prepared query is an XQC_Sequence. This object represents an
instance of the XQuery Data Model (XDM)6.

XQC_Sequence* sequence;
expr->execute(expr, NULL, &sequence);

Results of Query Execution

XQC_Sequence provides a cursor-like interface for exploring the query results. Recall that
an instance of the XDM is defined to be a sequence of Items, where each Item is either a
Node or an Atomic Value. The next() method of XQC_Sequence allows you to advance
through the sequence one item at a time. Details about the current item of a sequence
can then be read via accessor methods. For example, to retrieve the value of each item
as a C string, the string_value() accessor method can be used as follows:

const char* string;
while (sequence->next(sequence) == XQC_NO_ERROR) {

sequence->string_value(sequence, &string);
printf("%s", string);

}

6. http://www.w3.org/TR/xpath-datamodel/

Other accessors on XQC_Sequence include:
• integer_value() and double_value() - return the current item as a C int or a

C double, respectively.
• item_type() - return the basic type of the current item as an XQC_ItemType,

which is an enum comprising all seven XDM node types and the 23 non-derived
XML schema simple types.

• node_name() - return the name of the current node (an element or attribute) as
a QName (a namespace URI / localname pair).

• type_name() - return the type of the current item as a QName.

Static and Dynamic Contexts

You may have noticed the NULL arguments passed to the
XQC_Implementation::prepare() and XQC_Expression::execute() methods.
Together, these allow the user to provide the Expression Context7 for evaluating the
query.

prepare() can be passed a Static Context in the form of an instance of
XQC_StaticContext. Client code obtains an XQC_StaticContext via the
XQC_Implementation::create_context() method. Methods on XQC_StaticContext
allow the client to look up and configure a large number of components of the static
context, such as: the statically-known namespace definitions; the default element/type
namespace and the default function namespace; the base URI; the construction mode
("preserve" or "strip"); the ordering mode ("ordered" or "unordered"); the default order
for empty sequences ("least" or "greatest"); the boundary-space policy ("preserve" or
"strip"); the copy namespace mode ("preserve" or "no-preserve", and "inherit" or "no-
inherit"); and the XPath 1.0 compatibility mode setting. For all components which have
enumerated possible values, XQC provides a C enum matching those values which the
corresponding methods on XQC_StaticContext accepts. For instance,
XQC_BoundarySpaceMode has two values, XQC_PRESERVE_SPACE and XQC_STRIP_SPACE,
which can be passed to XQC_StaticContext::set_boundary_space_policy().

Analogously, execute() can be passed a Dynamic Context in the form of an instance of
XQC_DynamicContext. Client code obtains an XQC_DynamicContext via the
XQC_Expression::create_context() method. Methods on XQC_DynamicContext are
primarily for binding values to external variables in the prepared query via the
set_variable() method, and for binding a value to the context item for the expression
via the set_context_item() method. Both of these methods take an XQC_Sequence for
the value, which allows chaining queries. The client can also specify the implicit timezone
with set_implicit_timezone().

Here is a complete example, which demonstrates: setting a static context component
(base URI); executing a query with that static context; and chaining queries by binding
the result of the first query to an external variable in a second query.

XQC_StaticContext* stat = NULL;
XQC_DynamicContext* dyn = NULL;
XQC_Expression* query1 = NULL, query2 = NULL;
XQC_Sequence* result1 = NULL, result2 = NULL;

7. http://www.w3.org/TR/xquery/#context

// prepare and execute query1
impl->create_context(impl, &stat);
stat->set_base_uri(stat, "http://www.example.com/");
impl->prepare(impl, "fn:resolve-uri(\"index.html\")", stat, &query1);
query1->execute(query1, NULL, &result1);

// prepare, bind variable, and execute query2
impl->prepare(impl,

"declare variable $uri external; fn:concat($uri, \"#anchor\")",
NULL, &query2);

query2->create_context(query2, &dyn);
dyn->set_variable(dyn, "", "uri", result1);
query2->execute(query2, dyn, &result2);

// retrieve the string-value of the first item in result2
const char* str;
result2->next(result2);
result2->string_value(result2, &str);
/* prints "http://www.example.com/index.html#anchor" */
printf("%s", str);

Error Handling

As mentioned earlier, virtually all methods in XQC return XQC_Error. This enum has
values describing various error conditions that can occur when calling XQC methods,
such as "invalid argument", "not a node" (returned by XQC_Sequence::node_name()),
and "no current node" (returned by accessors on XQC_Sequence if the sequence has been
exhausted or not yet begun). It further has values for some non-error conditions, such
as "end of sequence" (returned by XQC_Sequence::next() when the sequence is
complete) and the successful "no error" condition. It also has values for implementation
failures such as "internal error" and "not implemented".

Finally, it has values for describing various classes of errors that can occur during query
compilation and processing, such as static errors, dynamic errors, and type errors.
However, frequently these will be insufficiently specific. The XQuery specification details
a large number of explicit error conditions, each identified by a QName, that an
implementation can raise to describe a wide range of processing errors. XQC client code
can receive these values via an XQC_ErrorHandler. This class is slightly different than
the five XQC classes we have seen so far in that the client code itself is responsible for
allocating the object and implementing its single method. For client code to inform the
XQC implementation about an XQC_ErrorHandler, it may be passed to the
set_error_handler() method on either XQC_StaticContext or XQC_DynamicContext.

The single method on XQC_ErrorHandler is named error(). It will be called by the XQC
implementation when an error is about to be raised. It will be passed the QName of the
error, as well as a string description. If the error occurred because the XQuery called the
fn:error() function, the argument to fn:error() will also be passed to the
XQC_ErrorHandler as an XQC_Sequence.

Memory Management and Thread Safety

All of the XQC classes, except XQC_ErrorHandler, have a method free(). Client code is
required to call this method when it is done with a given XQC object. There are
documented correct orders for freeing objects; generally, any object which was initially
created by a method on another XQC object must be freed before the object which
created it. For example, users must free any XQC_Expression objects created by calls to
XQC_Implementation::prepare() prior to freeing the corresponding
XQC_Implementation.

There are two exceptions to this general rule:
1. If an XQC_Sequence is bound to an external variable via

XQC_DynamicContext::set_variable(), the implementation takes ownership of
that XQC_Sequence and now has the responsibility for freeing it (presumably
when the XQC_DynamicContext is freed). Somewhat oddly, the same is not true
for an XQC_Sequence passed to XQC_DynamicContext::set_context_item();
the client code remains responsible for freeing that sequence.

2. The free() method of XQC_InputStream (discussed in the next section) is
actually called by the XQC implementation, not client code. This will be explained
below.

Three XQC classes have documented rules regarding thread safety.
XQC_Implementation and XQC_Expression are explicitly thread-safe, such that
instances may be shared between multiple threads. XQC_StaticContext is explicitly not
thread-safe; each thread should create its own when required.

Other Features

Additional XQC_Implementation factories

In addition to the prepare() and create_context() methods discussed earlier,
XQC_Implementation has several other methods which create instances of XQC
classes.

1. prepare_file() and prepare_stream() allow compilation of queries from
a C FILE* and from an XQC_InputStream (discussed below), respectively.

2. create_empty_sequence(), create_singleton_sequence(),
create_integer_sequence(), and create_double_sequence() create
instances of XQC_Sequence with the corresponding contents.

3. parse_document(), parse_document_file(), and
parse_document_stream() parse XML from a C char*, a C FILE*, or an
XQC_InputStream, respectively, returning the contents as an
XQC_Sequence.

XQC_InputStream

The seventh and final XQC class is XQC_InputStream. Like XQC_ErrorHandler, this
is intended to be allocated and implemented by client code. It is used as a way for
client code to pass data into the XQC implementation, specifically for compiling a
query or parsing an XML document via the prepare_stream() and
parse_document_stream() methods discussed in the last section. The main
method the user must implement is read(), which the implementation will call to
read a number of bytes from the client code. Also, as mentioned in the section on

memory management, there is a free() method which the client code must also
implement. This is called by the XQC implementation when it has completed
reading the data from the stream.

Extension interfaces

Each implementation of XQC will likely have some custom functionality it would
like to provide. XQC allows for implementation-specific extension functionality via
the method get_interface(), which is defined on the five XQC classes that the
implementation creates (that is, all except XQC_ErrorHandler and
XQC_InputStream). These methods allow client code to request implementation-
specific interfaces by name.

Conclusions and Future Outlook

XQC is a young specification. The authors would like to encourage adoption of the API
among a larger number of XQuery engines. Further, we would very much like to have
additional contributors to the XQC specification itself and to any reference
implementations of XQC. There are several outstanding projects which need additional
insight and implementors. For example:

1. As mentioned in the overview, it is intended that XQC will comprise both a
standard C API and a parallel standard C++ API. Version 1 defines only the C
API.

2. To allow truly cross-engine compatibility, especially for tools developers, it would
be ideal if the current requirement for an implementation-dependent entry point
to XQC_Implementation could be dropped.

3. XQC_Sequence has no methods for most of the node accessor methods defined
by the XQuery Data Model specification. Critically, there are no children() and
attributes() accessors for navigating into the node hierarchy.

4. XQC does not provide a way to specify collations or the default collation. (Zorba,
for example, provides this functionality via an extension interface.)

5. XQC version 1 provides no mechanism for implementing external XQuery
functions. (Again, Zorba also provides this functionality via an extension
interface.)

We believe that XQC in its current form represents a useful and usable standard, and
look forward to significant expansion and refinement in the future.

	Introduction to XQC - the C Language Binding for XQuery
	Overview
	Basics of Query Compilation and Execution
	Results of Query Execution
	Static and Dynamic Contexts
	Error Handling
	Memory Management and Thread Safety
	Other Features
	Additional XQC_Implementation factories
	XQC_InputStream
	Extension interfaces

	Conclusions and Future Outlook

